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Abstract. The spin-1 Ising model with bilinear and quadrupolar short-range interactions under magnetic
field is investigated within the two-particle cluster approximation. It is shown that for those values of the
quadrupolar interaction when at zero magnetic field the system undergoes a temperature phase transition
between quadrupolar and paramagnetic phases, a triple point may exist in the temperature vs. magnetic
field phase diagrams, necessarily along with a critical point. It is also shown that the critical points in the
temperature vs. magnetic field phase diagrams of the investigated model can be of three types.

PACS. 74.25.Ha Magnetic properties – 75.10.-b General theory and models of magnetic ordering –
75.10.Hk Classical spin models

1 Introduction

To obtain an adequate description of several magnetics
it does not suffice to use spin models with bilinear ex-
change interaction only, since the exchange interactions of
higher-degree spin operators (the physical origin of which
are different for different magnetic materials) play in them
an important role [1–3]. Hence, a considerable attention is
paid to the effects induced by higher-degree spin terms of
an exchange (e.g. biquadratic) as well as of a non-exchange
(e.g. single-ion anisotropy) origin on the physical proper-
ties of the systems [4–13].

One of the simplest model which admits higher-degree
spin exchanges is the spin-1 Ising model (Si = Sz

i =
0,±1) with bilinear K and quadrupolar K(q) short-range
interactions

H = −
N∑

i=1

ΓSi

− 1
2

∑
i,δ

[
KSiSi+δ + K(q)

(
S2

i − 2
3

) (
S2

i+δ −
2
3

)]
. (1)

Here Γ is a magnetic field; summation i, δ is going over
the nearest neighbor pairs.

On the basis of this model in the zero magnetic field
case, the quadrupolar ordering in magnetic materials was
studied [4] within the mean field approximation (MFA).
Within this approximation the quadrupolar moment is the
order parameter, whereas within the constant-coupling
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approximation or within the two-particle cluster approx-
imation (TPCA) it is not [1,14,15]. It should be men-
tioned here, that the constant-coupling approximation,
two-particle cluster approximation, as well as the Bethe
approximation (see e.g. Ref. [16]) yield the same results,
which follow, however, from different considerations.

The model (1) is the partial case of the Blume-Emery-
Griffiths model which was originally introduced in ref-
erence [17] to describe the phase separation and super-
fluid ordering in He3–He4 mixtures. Now it is one of the
most extensively studied models in the condensed mat-
ter physics. That is so not only because of the rela-
tive simplicity with which approximate calculations for
this model can be carried out and tested, but also be-
cause versions and extensions of the model can be ap-
plied for the description of a wide class of real objects.
It proves to be efficient for simple and multicomponent
fluids [11,18,19], dipolar and quadrupolar orderings in
magnets [1,4,11], binary alloys of ferromagnetic and non-
magnetic components [11,20], ordering in semiconducting
alloys [21]. Moreover, due to the richness of its phase dia-
grams [16,22–28] the Blume-Emery-Griffiths model is also
of a purely theoretical interest.

In this paper we investigate the magnetic field influ-
ence on thermodynamical characteristics of the model (1)
on a simple cubic lattice at positive values of bilinear and
quadrupolar interactions within the two-particle cluster
approximation. It will be shown that magnetic field not
simply induces a non-zero magnetization in “paramag-
netic” and “quadrupolar” phases, but also may split a
temperature phase transition into a cascade of transitions.
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In construction of the phase diagrams of magnetic sys-
tems with spin-spin and quadrupolar-quadrupolar inter-
actions [4–7] the consideration is usually restricted to the
MFA, or it is used as the first-order approximation. For the
Blume-Emery-Griffiths model, the TPCA, in contrast to
MFA, correctly responds to the competition not only be-
tween the ferromagnetic bilinear and negative single-ion
anisotropy, but also between ferromagnetic bilinear and
negative biquadratic interactions. The obtained within
TPCA phase diagrams in the (biquadratic interaction,
temperature) plane for the model on different lattice types
in the zero single-ion anisotropy case [15,16] qualitatively
agree with the Monte-Carlo simulation results [29,30].
We would like to mention that the presented in refer-
ences [15,29] phase diagrams in the temperature vs. bi-
quadratic interaction plane at zero single-ion anisotropy
are not complete: the line separating the quadrupole and
staggered quadrupole phases is absent, since only a one-
sublattice model was considered. Furthermore, the fact
that TPCA predictions for the spin-1 Ising model coin-
cide with the exact results (see Ref. [14]) indicates a high
accuracy of the cluster approximation.

2 Two-particle cluster approximation

The free energy of the spin-1 Ising model with bilinear
and quadrupolar short-range interactions under magnetic
field (1) within the TPCA reads [15,27,28]:

F = −kBTN

[
(1 − z) lnZ1 +

z

2
ln Z12 +

2
9
βzK(q)

]
, (2)

Z1 = 2eβκ̃
′ · cosh(βκ̃) + 1, (3)

Z12 = 2eβ(2 ˜̃
κ

′+K(q))
[
eβK · cosh(2β ˜̃

κ) + e−βK
]

+ 4eβ ˜̃
κ

′ · cosh(β ˜̃
κ) + 1.

Here z is the number of nearest neighbors, β = (kBT )−1,
κ̃ = Γ + zϕ, κ̃

′ = − 2
3zK(q) + zϕ′, ˜̃

κ = Γ + (z − 1)ϕ,
˜̃
κ
′ = − 2

3zK(q) + (z − 1)ϕ′.
For cluster fields ϕ and ϕ′ we have the system of equa-

tions [15,27,28]:
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For magnetization m = 〈S〉 and quadrupolar moment q =
3(〈S2〉 − 2

3 ) we have the expressions:

m =
2eβκ̃

′· sinh(βκ̃)
Z1

, q =
6eβκ̃

′· cosh(βκ̃)
Z1

− 2. (5)
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Fig. 1. The k(q) vs. t phase diagram at zero magnetic field.
Thick dashed and solid lines indicate the PT ferromagnetic →
paramagnetic phase of the second and first order, respec-
tively. Thin solid line indicates the first order PT quadrupo-
lar → paramagnetic phase. Thick dashed-dotted line indicates
the first order PT ferromagnetic → quadrupolar phase. Thin
dashed and dotted lines correspond, respectively, to the inflec-
tions in the temperature dependences of a quadrupolar mo-
ment and to the maxima in the temperature dependences of
static magnetic susceptibility. The special points are the tri-

critical (TCP), triple (TP) and critical (CP) points. k
(q)
χ is the

coordinate of the intersection point between the temperature
phase transition line and the line of the χ(t) maxima.

3 Numerical analysis results

Let us consider results of our numerical investigation of
the model (1) on a simple cubic lattice (z = 6) at positive
values of interactions K and K(q). Here we use the follow-
ing notations for the relative quantities: t= 3kBT/(2zK),
h = Γ/K, k(q) = K(q)/K.

It will be easier to describe the effects produces by
magnetic field, if we, at first, briefly consider and complete
the previous [1,4,14,15] results obtained for the case of
zero external magnetic field. Within the TPCA [1,14,15],
similarly to the case of MFA [4], we shall distinguish the
three following phases:
• ferromagnetic phase (m �= 0, q �= 0; both m and q are

convex upwards and decreasing functions of tempera-
ture);

• paramagnetic phase (m = 0, q �= 0, q(t → ∞) = 0;
usually q(t) is a convex downwards and decreasing or
convex upwards and increasing function);

• quadrupolar phase (m = 0, q �= 0; q(t) is a convex
downwards and increasing function).

Hereinafter, we shall determine what temperature behav-
ior of the thermodynamic characteristics is pertinent to a
particular phase only at those values of k(q), when we can
clearly determine the phase in which the system is, that
is, when a phase transition (PT) takes place on changing
temperature. It should be noted that within the mean
field approximation, the criterion for phase discrimina-
tion is clearer than within the TPCA, since in the MFA
not only the magnetization but also the quadrupolar mo-
ment (1) is the order parameter (q = 0 in the paramag-
netic phase) [4,15].

In Figure 1 we show the obtained within the TPCA
phase diagram in the (k(q), t) plane. At k(q) < k

(q)
TCP
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(TCP is the tricritical point ; k
(q)
TCP = 2.28) the TPCA

yields the second order temperature PT ferromagnetic →
paramagnetic phase. At k

(q)
TCP < k(q) < k

(q)
TP (TP is

the triple point; k
(q)
TP = 3.0) the first order temperature

phase transitions ferromagnetic → paramagnetic phase
take place. At k

(q)
TP < k(q) < k

(q)
CP (CP is the critical point;

k
(q)
CP = 3.2) the first order temperature PT quadrupo-

lar → paramagnetic phase take place. At k(q) > k
(q)
CP no

temperature PT is expected by the TPCA. However, the
behavior of q(t) is characteristic of a quadrupolar phase
at low temperatures and of a paramagnetic phase at high
temperatures.

Figure 1 also contains the line corresponding to the
maxima of the static magnetic susceptibility χ(t) and the
line of the inflection points of the q(t) curve. The line of
the χ(t) maxima converges with the line of the quadrupo-
lar phase → paramagnetic phase transition at the left side
of the critical point at k(q) = k

(q)
χ . At k

(q)
χ < k(q) < k

(q)
CP

χ(t) is not a decreasing function in the paramagnetic
phase, but has a maximum. The line of the q(t) inflec-
tion points converges with the line of the quadrupolar
phase → paramagnetic phase transitions in the critical
point at k(q) = k

(q)
CP.

The phase diagram obtained within mean field ap-
proximation is qualitatively different [4,15]. At k(q) < 1.5
and 1.5 < k(q) < 3.0 the MFA (similarly to TPCA)
predict the temperature ferromagnetic → paramagnetic
phase transitions of the second and first order, respec-
tively (k(q) = 1.5 and k(q) = 3.0 are the coordinates of the
tricritical and triple points). However, within the MFA
the (k(q), t) phase diagram of model (1) in zero magnetic
field case contains no critical point: the first order PT
quadrupolar → paramagnetic phase is predicted by MFA
at any k(q) > 3.0.

It should be mentioned that such a critical point may
appear within the MFA in a more general Blume-Emery-
Griffiths model [18].

In the non-zero magnetic field case, similarly to the
zero field case, we shall distinguish the three following
phases: ferromagnetic, “paramagnetic”, and “quadrupo-
lar”. The “paramagnetic” and “quadrupolar” phases differ
from the paramagnetic and quadrupolar phases by non-
zero field-induced magnetization only. The m(t) is an in-
creasing function in the “quadrupolar” phase and a de-
creasing convex downward function in the “paramagnetic”
phase. In non-zero magnetic field the temperature PT can
be of the first order only.

Figure 2 shows the obtained within the TPCA (h, t)
phase diagrams at different values of the quadrupolar in-
teraction. The diagrams also contain the lines correspond-
ing to the maxima of the static magnetic susceptibility and
to the inflection points of the quadrupolar moment tem-
perature curves. Figure 2 illustrates the major aspects of
the changes in the topologies of the (h, t) phase diagrams
with changing k(q).

At those values of the quadrupolar interaction, when
at h = 0 the system undergoes the second order ferro-

magnetic → paramagnetic phase transition on increasing
temperature (k(q) < k

(q)
TCP), the magnetic field leads to

“smearing out” (disappearance) of the temperature phase
transition. Instead of vanishing magnetization and instead
of the cusp in the quadrupolar moment temperature curve
(as at the second order ferromagnetic → paramagnetic
phase transition), magnetic field induces inflection points
in the temperature curves of magnetization and quadrupo-
lar moment, whereas the χ(t) does not diverge but has a
finite maximum. Topology of the (h, t) phase diagrams at
k(q) ∈ [0, k

(q)
TCP[ are illustrated in Figure 2a. These dia-

grams contain critical points. The points of the second
order PT ferromagnetic → paramagnetic phase at h = 0
are the critical points in the (h, t) diagrams (hCP = 0,
tCP = tc, where tc is the transition temperature).

The typical (h, t) phase diagrams for those values of
quadrupolar interaction when at h = 0 the system under-
goes the first order ferromagnetic → paramagnetic phase
transition on increasing temperature (k(q)

TCP < k(q) < k
(q)
TP)

are given in Figure 2b. At h < hCP the system undergoes
the first order transition ferromagnetic → “paramagnetic”
phase. The larger h, the lower are jumps of the thermo-
dynamic characteristics at this transition. At h = hCP the
jumps vanish, and at h > hCP no temperature PT takes
place.

However, at those values of the quadrupolar inter-
action when the system at h = 0 undergoes the first
order transition quadrupolar → paramagnetic phase
(k(q)

TP < k(q) < k
(q)
CP), the changes taking place with

the magnetic field are not as clear as in the two de-
scribed above cases. The (h, t) phase diagrams can be of
three different topologies (see Figs. 2c–2e) in the three
parts of the k(q) ∈ ]k(q)

TP, k
(q)
CP[ interval: k(q) ∈ ]k(q)

TP, 3.048[,
k(q) ∈ ]3.048, 3.099[, k(q) ∈ ]3.099, k

(q)
CP[.

Topology of the (h, t) phase diagram at
k(q) ∈ ]k(q)

TP, 3.048[ is shown in the Figure 2c. The
diagrams contain triple points at h = hTP, criti-
cal points at h = hCP, and the ground state phase
boundary points (0P) at h = h0P = k(q) − 3, where
h0P < hCP. At low fields, the system undergoes the
temperature transition “quadrupolar” → “paramagnetic”
phase. Increasing field splits this PT at the triple
point into the cascade of the transitions “quadrupo-
lar” → ferromagnetic → “paramagnetic” phase. Further
increasing of field decreases the temperature of the
“quadrupolar” → ferromagnetic phase transition down to
its vanishing at zero temperature at h = h0P and decreases
the jumps of the thermodynamic characteristics at the
temperature transition ferromagnetic → “paramagnetic”
phase down to their vanishing and “smearing out” of the
transition.

Topology of the (h, t) phase diagram at
k(q) ∈ ]3.048, 3.099[ shown in Figure 2d differs
from the described above ones by the fact that
hCP < h0P. The system undergoes the tempera-
ture PT “quadrupolar” → “paramagnetic” phase at
h∈ ]0, hTP[, a cascade of the transitions “quadrupo-
lar” → ferromagnetic → “paramagnetic” phase
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Fig. 2. The h vs. t phase diagrams at different values of quadrupolar interaction: (a) – k(q) =1.4, 2.2; (b) –k(q) =2.8, 2.996;
(c) – k(q) = 3.02; (d) – k(q) = 3.06; (e) – k(q) = 3.12; (f) – k(q) = 3.4; (g) – k(q) = 50; (h) – k(q) = 40 000. Thick solid line indicates
the first order temperature PT. Thin dashed and dotted lines correspond to the inflections in the temperature dependences of
quadrupolar moment and to the maxima in the temperature dependences of static magnetic susceptibility, respectively. The
special points are the triple point (TP), critical point (CP), and phase boundary point in the ground state (0P). h1χ, hχ and hq

are the coordinates of the intersection points of temperature PT line and of the lines, which correspond to maxima in χ(t) and
to inflections in q(t).

at h∈ ]hTP, hCP[, and the transition “quadrupo-
lar” → ferromagnetic phase at h∈ ]hCP, h0P[.

It should be also noted that the lines corresponding to
the maxima of χ(t) and to the inflection points of q(t) in
all the described above cases (see Figs. 2a–2d) converge
into the critical point.

At k(q) = 3.099 the triple and critical points at the
(h, t) phase diagram coalesce and disappear along with
the line of the ferromagnetic → “paramagnetic” phase
transition; at k(q) > 3.099 there is no longer a boundary
between the ferromagnetic and “paramagnetic” phases.
At k(q) ∈ ]3.099, k

(q)
CP[ the topology of the phase diagrams

is the same as of the diagram given in Figure 2e. Here

the lines corresponding to the maxima of χ(t) converge
with the line of the phase transitions at h = h1χ and
h = hχ, whereas the line of the inflection points of q(t)
converges with the PT line at h = hq; here hχ �= hq.
At h ∈ [0, h0P[ the system undergoes a temperature PT;
at small fields the temperature dependences of thermo-
dynamic characteristics in the vicinity of tc are the same
as at the “quadrupolar” → “paramagnetic” phase tran-
sition, whereas at fields close to h0P they are as at the
“quadrupolar”→ ferromagnetic phase transition. At fields
close to hq in the high-temperature phase near tc the tem-
perature dependences of some thermodynamic character-
istics are as in the “paramagnetic” phase, whereas the de-
pendences of the others are as in the ferromagnetic phase.
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At k(q) > k
(q)
CP, when at zero magnetic field there is no

temperature PT in the system, the topology of the (h, t)
phase diagrams are as shown in Figures 2f–2h. Here the
critical points at h = hCP and the ground state phase
boundary points at h = h0P are present. Increasing k(q)

does not qualitatively change the phase diagram. However,
the curve corresponding to the maxima of χ(t) at h < hCP

splits into two branches (see Figs. 2f–2h).
The critical points at k(q) > k

(q)
CP are of a different

type than those at the phase diagrams shown in Figure 2a
and in Figures 2b–2d. In these critical points the temper-
ature phase transition arises on increasing field, not disap-
pears. At rather small fields from the interval ]hCP, h0P[,
the behavior of the thermodynamic characteristics near
tc is as at the “quadrupolar” → “paramagnetic” phase
transition; at sufficiently high fields the behavior is as at
the “quadrupolar” → ferromagnetic phase transition. It
should be also noted that the lines corresponding to the
maxima of χ(t) and inflection points of q(t) at low fields
converge with the line of the phase transition at the crit-
ical point (at h = hCP) and at high fields converge with
the line of the PT at several points (hχ < hq).

4 Conclusions

Within the two-particle cluster approximation, we study
the spin-1 Ising model with bilinear and quadrupolar in-
teractions in a magnetic field for the simple cubic lattice.
It is shown that at those values of quadrupolar interac-
tions when at zero field the system undergoes a first or
second order temperature phase transition from the fer-
romagnetic to paramagnetic phase, the phase diagrams in
the (temperature, magnetic field) plane contain a criti-
cal point. At those values of the quadrupolar interactions
when at zero field the system undergoes a first order tem-
perature phase transition from the quadrupolar to para-
magnetic phase, the phase diagrams in the (temperature,
magnetic field) plane may contain a triple point, a critical
point, and a phase boundary point in the ground state or
a phase boundary point in the ground state only. At those
values of the quadrupolar interactions when at zero field
there is no temperature phase transition, the phase dia-
grams in the (temperature, magnetic field) plane contain
a critical point and a phase boundary point in the ground
state.

It is also shown that the studied model has three types
of the critical points in the (temperature, magnetic field)
phase diagrams. At the critical points of the first type,
there is a second order phase transition from the ferro-
magnetic to paramagnetic phase at zero field; application
of field smears out this transition. At the critical points of
the second type, the first order temperature phase tran-
sition from the ferromagnetic to “paramagnetic” phase
disappears on increasing field. At the critical points of
the third type, a transition arises on increasing field; in
this case the behavior of the thermodynamic character-
istics near the transition temperature is as at the first
order phase transition from the “quadrupolar” to “para-
magnetic” phase.

It is established that if the phase diagram in the (tem-
perature, magnetic field) plane contains a critical point,
then at this point the line of phase transition and the
lines corresponding to the inflections and maxima of the
temperature curves of the quadrupolar moment and static
magnetic susceptibility, respectively, do converge.
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